A new in vitro model of the human ileal ecosystem and its lumen and mucus-associated microbiome

Auriane Bron^{1,2,3}, <u>Chloé Beltramo^{1,2,3}</u>, Claude Durif^{1,3}, Trisha Arora⁴, Charlotte Deschamps^{1,3}, Ingrid Couturier^{1,3}, Xavier Domingo-Almenara⁴, Yolanda Otero⁵, Sylvain Denis^{1,3}, Tom Van de Wiele^{2,3}, Stéphanie Blanquet-Diot^{1,3}

¹Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Microbiology, Digestive Environment and Health, Clermont-Ferrand, France; ² Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium; ³International associated laboratory host microbes interactions **Valbiotis** in the human gut (HOMIGUT); ⁴ Eurecat, Technology Center of Catalonia, Reus, Catalonia, Spain; ⁵Valbiotis R&D Riom Center, Riom, France.

INTRODUCTION

MED

INRA

RÉPUBLIQUE

FRANÇAISE

Clermont

Auvergne

Liberté

Égalité Fraternité

GHENT

UNIVERSITY

The **human small intestine** is the main site of food digestion and nutrient absorption. Its microbiota certainly plays a key role in host health, but until now it has been largely understudied due to sampling invasiveness, especially in healthy volunteers. One alternative to *in vivo* assays is the use of *in vitro* models simulating the human digestive tract. However, up to now, there is no available *in vitro* system simulating the human ileal ecosystem and its associated microbiota, that has been fully developed and validated based on *in vivo* data.

Aim of this study: Develop and validate an *in vitro* dynamic model of the healthy and microbiota, reproducing both **luminal** ileum human mucosal microenvironments and the kinetics of feeding (alternance of fasted - fed states).

. Different clustering of lumen and mucus-associated microbiota in the M-ARILE

. Significant higher proportion of CO_2 in fed (S2) than in fasted state (S1)

SCFA composition

SCFA proportions donor-dependant, with are an average acetate/propionate/butyrate ratio of 80/17/4 %, no butyrate for donor F1 . Total SCFA concentrations, as well as the three main SCFA, significantly higher in fed than in fasted state

Microbiota composition

Differential analysis: significant higher abundance of *Akkermansiaceae* in fasted than in fed state

Total bacteria load

. Bacterial load in the lumen similar to *in vivo* (10⁸ copies/mL) . No significant difference in the number of bacteria between fed and fasted states

VALIDATION

Comparison between *in vitro* data in the M-ARILE and *in vivo* data in healthy human ileum

			M-ARILE	In vivo (ileum)	<i>In vivo-in vitro</i> correlation
Microbiota activity		Total SCFA	19.1	11.7-81.6	>
	SCFA production ^{I, II}	Acetate	14.5	7.9-64.6	>
	(mM)	Propionate	3.8	1.5-3.3	
		Butyrate	0.9	2.3-13.7	×
		CH_4	0	0	
	Gas proportion ^{III, IV}	CO ₂	50.3	6-17.5	×
	(%)	02	3.7	5-41	
	$\langle c_{2} \rangle$	H ₂	9.3	0.3-3.5	×
Microbiota load	Total bacteria ^V		108	107-108	>
Microbiota composition ^{VI-XIII} (Family)	Streptococcaceae	Luminal & Mucosal	-	+	×
	Veillonellaceae		+	+	
	Clostridiaceae		+	+	
	Lactobacillaceae		-	+	×
	Enterobacteriaceae		+	+	
	Bacteroidaceae		+	+	
	Bifidobacteriaceae		+	+	\checkmark

Lower α -diversity in fed than in fasted state

Hypothesis: fast growing of dominant *microbes, 'hiding' low abundant biomass*

^ICummings *et al.*, 1987; ^{II}Zoetendal *et al.*, 2012; ^{III}Berean *et al.*, 2018; ^{IV}Kalantar-Zadeh *et al.*, 2018-2019; ^VDelbaere *et al.*, 2022; ^{VI}Booijink *et al.*, 2010; ^{VII}Fan *et al.*, 2020; ^{VIII}Kashiwagi *et al.*, 2020; ^{IX}Nagasue *et al.*, 2022; ^XShalon *et al.*, 2023; ^{XI}Van Trijp *et al.*, 2024; ^{XII}Wang *et al.*, 2005; ^{XIII}Zilberstein *et al.*, 2007

Most of the results in the M-ARILE are in accordance with *in vivo* data in healthy human ileum

The M-ARILE model can provide a powerful platform for mechanistic researches on personalized nutrition and medicine in the gut microbiome field by providing information on

- the impact of ileal microbiota on food digestibility and micronutrients bio-accessibility
- the effect of drug on ileal microbes but also their potential for drug metabolism
- the interactions between food-borne pathogens and ileal microbial communities

© 2025 Chloé BELTRAMO - All rights preserved

Project funded by Auvergne Rhône-Alpes Region and French Research National Agency

